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Capacity of neural networks with discrete synaptic couplings 
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The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel 

Received 12 January 1990 

Abstract. We study the optimal storage capacity of neural networks with discrete local 
constraints on the synaptic couplings J,,. Models with such constraints inlcude those with 
binary couplings J,, = i l  or J,, = 0, 1, quantised couplings with larger synaptic range, e.g. 
J,, = *l/L, *2/ L, . . . , *1 and, in the limit, continuous couplings confined to the hypercube 
l J 8 , 1 s  1 (‘box confinement’). We find that the optimal storage capacity ( Y ( K )  is best 
determined by the vanishing of a suitably defined ‘entropy’ as calculated in the replica 
symmetric approximation. We also extend our results to cases with biased memories and 
make contact with sparse coding models. 

1. Introduction 

We study networks of N fully connected binary neurons {SI},=,, , N ,  S,  = i l ,  coupled 
by a matrix of synaptic couplings J V ,  having local thresholds 0, and obeying zero- 
temperature dynamics 

We are interested in the network’s functioning as an associative memory, in which 
p random memories {,$}yZl~:::;~, & =  *l ,  are stored as fixed points of the dynamics (1). 
We actually require 

forall  p = l ,  . . . ,  p and i = l ,  . . . ,  N 
j #  i 

since, although the memories are fixed points of the dynamics even for K = 0, positive 
K is needed to ensure large basins of attraction. When K > 0, its value is meaningful 
only when one specifies the normalisation of the coupling matrix JI, ,  due to the 
possibility of an overall rescaling of the inequalities (2) .  One commonly used normalisa- 
tion is the spherical normalisation: 

J ; = N  
J f ’  

( 3 )  

which is a global constraint on the rows of the coupling matrix. Provided that solutions 
to (2) subject to (3) exist, one can be found, for example, by applying the ‘perceptron 
algorithm’ (Rosenblatt 1962, Minsky and Papert 1969, Gardner 1988, Diederich and 
Opper 1987). 

A significant contribution to this problem was achieved by Gardner (1988) who 
showed that the probability of existence of solutions can be deduced from the fractional 
volume in the phase space of the parameters Ji, within which equations (2) and (3) 
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2614 H Gutfreund and Y Stein 

are satisfied. Gardner’s work effectively decouples the question of the existence of 
solutions and the theoretical storage capacity a, = p /  N ,  from the problem of actually 
producing such solutions using a specific learning algorithm. 

It is of great interest to study models in which the global constraint (3) is replaced 
by local constraints on individual Jlj .  One important class of models of this nature is 
distinguished by Jv which are only allowed to assume a discrete set of values. In other 
cases the Jlj values can be chosen from continuous intervals, such as for the ‘box 
confinement’ IJ,I s 1, interval constraints of the type 0 < c 6 IJvI S 1, and constraints 
which impose a priori probability distributions on the J,,. 

The study of neural networks with local constraints on the coupling strengths is 
well motivated from both biological and applications points of view. It is very 
implausible to assume a biological mechanism which preserves infinite precision of 
truly continuous Jl, and it is therefore interesting to study the effect of some coarse 
graining of synaptic efficacies, for example, by encoding the information using a finite 
number of discrete values. Likewise, in hardware implementations it may prove simpler 
to realise networks wherein the couplings are restricted to discrete values such as 
Jl, = 0, 1 (connected or not), J,, = *l (direct or inverted), or more generally Jv restricted 
to digital values. 

In the present paper we discuss a class of models for which the Jv are restricted 
to a discrete set of values. Networks with JIj = *l and JI, = 0, 1 have been studied 
previously in the context of models with specified dependence of the couplings on the 
stored memories, namely the clipped Hebb rule (Hopfield 1982, Sompolinsky 1986) 
and the Willshaw model (Willshaw et al 1969, Golomb et a1 1990). In the context of 
studies of optimal storage capacity, the Ising interaction case Jlj = *1 was considered 
by Gardner and Derrida (1988) in the replica symmetric approximation, who found 
for K = 0 a critical storage capacity a, = 4 / ~ .  This result exceeds the information 
theoretic bound of a, = 1, indicating, as they explicitly show, that the replica symmetry 
must be broken. This adds an additional motivation to study the Ising interaction 
case, as a problem of basic interest for the understanding of the replica method. With 
mainly this goal in mind, this problem has been investigated recently by Krauth and 
MCzard (1989). They found a one-step replica symmetry breaking solution which gives 
a,=0.83, precisely the value at which the replica symmetric entropy vanishes. In 
addition this value is in good agreement with numerical evidence (Gardner and Derrida 
1989, Krauth and Opper 1989). 

In section 2 we calculate the expectation of the logarithm of the number of solutions 
to the inequalities ( 2 )  subject to general local constraints and derive the replica 
symmetric saddle-point equations. In section 3 we define three lines of interest in the 
K against a plane: ( a )  the GD (Gardner-Derrida) line, which defines an ~ J K )  similar 
to that of Gardner and Derrida (1988); ( b )  the AT (de Almeida-Thouless) line below 
which the replica symmetric solution is stable (de Almeida and Thouless 1978); (c)  
the ZE (zero-entropy) line, on which the replica symmetric entropy vanishes. In sections 
4 and 5 we discuss specific cases. Finally, in section 6 we consider biased memories, 
with particular emphasis on extreme bias. 

Let us first summarise our basic results. 
( a )  We extend Gardner’s formalism (Gardner 1988, Gardner and Derrida 1988) 

to the general case of local discrete constraints, including the effects of biased memories. 
( b )  We find that for all cases considered here the GD line is unstable with respect 

to replica symmetry breaking (RSB) ,  while the ZE line is stable. Thus the latter gives 
our best estimate of the optimal storage capacity. 
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( c )  We calculate the optimal storage capacity and connectivity for the case Ju = 0, 
1, and verify the results by simulations. 

( d )  We determine optimal capacities for the multivalued discrete cases such as 
Ju = *l/ L, * 2 /  L, . . , , il, and find the K = 0 values to be in consonance with a simple 
estimate when L 2 3. 

( e )  We contrast the optimal storage capacity for the case lJ1,l s 1 (‘box confinement 
constraint’) which is a limiting case of discrete couplings, with that of the spherical 
constraint. 

(f) We verify the theoretical predictions for the box confinement case by performing 
simulations based on the simplex linear programming algorithm. 

(g) We extrapolate the information capacity of the binary-valued cases to the 
extremely biased case, thereby making contact with sparse coding models. 

A short version of our results has been previously presented (Gutfreund and Stein 
1989). 

2. Replica symmetric theory 

In the first subsection we will assume the stored memories to be unbiased ( ( 7 )  = 0 and 
uncorrelated ((?(;) = 0 and take the local thresholds to be zero, 0, = 0. In the following 
subsection we will lift these restrictions. 

2.1. Unbiased memories 

The calculation commences with the observation that given the set of memories 
{6~}~Z1~:;; ;~, the function 

serves as an indicator function, i.e. equals one if JI,  obeys (2) and is zero otherwise. 
Thus, for the spherical normalisation (3), the fractional volume in the coupling space 
of the properly normalised J,, matrices which obey ( 2 )  is given by 

where dJ ,  = n,,, dJ,,. In the absence of any restriction on the correlation between Jll 
and J,,, the neurons i are decoupled and the fractional volume can be calculated for 
each site separately. As we are interested in the typical case for all possible realisations 
of the memories, we should average In V over the probability distribution of 67. This 
is the basis of Gardner’s approach (Gardner 1988) to the calculation of the storage 
capacity. In the case of discrete J,J, restricted to a finite set of values, the number of 
solutions SZ to (2)  and (3) is finite. This number of solutions SZ replaces the fractional 
volume V and is given by 

a= Tr I(Jv, 67)  (6) 
31, 

where the trace stands for summation over all allowed discrete values of JIJ. 
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The typical value of a is given by exp((1n Cl)}, and performing the average of In 0 
over the different sets of memories requires the use of the 'replica trick': 

(a") - 1 
(In 0) = lim - 

n - o  n (7) 

whereby averaging of the logarithm is replaced by averaging of the power. This latter 
is accomplished by introducing an ensemble of n identical replicas of the system in 
terms of which 

where a is the replica index. 

two solutions labelled a and /3 is represented by the order parameter 
We next introduce two pairs of conjugate order parameters. The overlap between 

while the normalisation (self-overlap) of a solution a is specified by a second order 
parameter 

(10) 
1 

Q" =%e J:* OsQ"s1. 
I 

This latter is absent in the treatment of the spherical normalisationAsince it equals one 
identically. The role of the conjugate order parameters and Q" is to enforce (9) 
and (10). 

The, by now standard, procedure (Gardner 1988) gives 

G = aG, + G2+i  6"Q" + i  4aPqaP 
LI " < P  

We now adopt the replica symmetric ansatz: 
q"" = 0 

4 U "  = 0 

9 f < P  = 

Q " = Q  
Pp = 4 
6- = 6 

and further perform a change of variables to 

40" Q - 4  

F2= iFl +io 

F, = -is* 

with Q retaining its former status. 
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When N increases to the thermodynamic limit we can perform the integrals by 
saddle-point integration: 

g = G/ n = ag, + g ,  - F,qo/2  + F2Q. (17 )  
The integrations are carried out over all four order parameters, and 

m 

g ,  = 5 D t  In H ( A ( t ) )  

g2  = J D u  ln exp( uJF7 J - F2J2) 

-X 

X 

-" 
where 

D x  = - dx exp( -:) 
J5;; 

the last two variables being defined for the following. The saddle-point equations are 
obtained by differentiating (17 )  with respect to all four order parameters, resulting in 

where 

J -c€ 

go=-{ 1 "  D u u J  
JF, 

- Tr, J k  exp( um J - F2J2> 
Tr, exp( u a  J - F2J2) 

k = 1,2 .  J k  = 

This constitutes a set of self-consistent equations for any given K and a which 
determine all variables needed to calculate the function G and thus the typical number 
of solutions exp((1nfl)). The saddle-point value of G, which is the extremum of 
equation (12 )  with respect to all order parameters, will henceforth be called the 'entropy'. 
This is consistent with the usual definition in statistical physics where the logarithm 
of the number of states typically available to a system is proportional to the entropy. 
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2.2. Biased memories 

We now consider the effect of allowing biased memories and a non-zero threshold. 
The bias is introduced by the following non-trivial distribution for the memories: 

l + m  1 - m  S ( g - l ) + - S ( g + l ) .  
2 P ( C )  =Yj- 

Equation (8) is supplemented by a threshold term and the average is now interpreted 
to be over this distribution. Furthermore, we augment our set of order parameters 
(defined in (9) and (10)) with the ferromagnetic bias 

and its conjugate variable h?, which turns out to be of negligible importance in the 
thermodynamic limit. The replica symmetric ansatz (14) is extended to include Ma = M 
and M can be replaced by an equivalent order parameter 

thus eliminating explicit reference to the threshold. 
v = M - O / m  (27) 

We thus obtain 

= exp[ Nn( extr g + O( 1/  N ) ) ]  
uQ9oFi F2 

00 

g2 = j-, Du In Tr J exp( u a  J - F2J2) 

and defining 

the saddle-point equations are 
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These equations, along with (22) and (23), constitute a set of self-consistent equations 
for any given K ,  a and m which determine all variables needed to calculate the entropy 
and thus the typical number of solutions exp((1n a)). 

3. The three lines of interest 

3.1. The G D  line 

For the spherical normalisation constraint studied by Gardner (equations (2) and (3)) 
the subspace of solutions is continuous and convex and is embedded in a continuous 
and unbounded surroundings of candidate matrices. When, for fixed K ,  a is increased 
from zero towards its critical value, this subpsace shrinks until it contains only a single 
point in the limit q + 1. For the case of local constraints this corresponds to q + Q or 
equivalently qo+ 0; we are, however, no longer confident that at the end of this shrinking 
process, we remain with a matrix which satisfies the local constraints. Thus, while we 
expect this process to provide the actual capacity for the spherical normalisation 
constraint, it will in general supply an upper bound, which we call the GD line a:?:. 
This line is the upper boundary of meaningful phase space. 

For unbiased memories, in the limit qo+ 0, the expression for g ,  in (17) simplifies 
to 

g1= -- I J ~ Df(K-l-Gt)2 
2q0 - ~ / d o  

and the saddle-point equations can be expressed as 

F l = 2 I x  9 0  - * / d o  Dt(t+-&)2 

2q0  - K / J Q  D t t ( t + L )  JQ 

where, once again, Q and qo are as in (22) and (23) respectively. 
For biased memories 

DtA:(t)+- 
- r+ 1 I-:- Dt A!( t )) 

and the saddle-point equations can be expressed as 

where 

- K  7 mU 
T =  
* - [ Q( 1 - m2)]1’2 

and, again, the equations for Q and qo are unchanged. 

(35) 

(37) 
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These equations can be solved numerically using an iterative procedure (equation 
(39) being viewed as a non-linear function of U, whose root is being sought), and then 
repeating with decreasing values of qo allows extrapolation qo + 0, thereby determining 
the storage capacity ac. If we are interested only in a, a simpler procedure is available, 
which we will demonstrate for the unbiased case. Since J F ,  and F2 are proportional 
to q;', the traces in (24) are dominated by a single term when qo+ 0. This term contains 
Jopt, the allowed value of J closest to 

As long as J,,, # 0, the traces in both numerator and denominator of the equations for 
Q and qo can be approximated by a single term, and the integrands reduce to J$[ and 
uJOpt, respectively. For the special but important case K = 0 the saddle-point equations 
simplify even further, because then 

3.2. The AT line 

Formally the GD line is unsatisfactory because it is not stable with respect to replica 
symmetry breaking. We are thus lead to study the AT line, below which the replica 
symmetric solution is stable with respect to local variations of qep, Q" and their 
conjugate order parameters. Being the limit of replica symmetry stability we might 
expect the AT line CY"'(K) to reliably predict the true capacity. 

The onset of RSB is signalled by a change of sign in at least one of the eigenvalues 
of the matrix of second derivatives of G with respect to all the order parameters. This 
matrix can be represented schematically, in view of equation (12), in block form 

( aafG' a29. 
For the unbiased case, the upper left block contains derivatives with respect to qmp 

and Q", while the lower right contains those with respect to tap and 6". Requiring 
all of the eigenvalues (and thus the determinant) to be positive leads to the replica 
symmetry stability criterion (Gardner 1988, Gardner and Derrida 1988) 

" Y I Y 2 <  1 (44) 

where y ,  and y 2  are the transverse eigenvalues of a2G1 and a2G2, respectively: 

J --cc 

31 

y 2 =  [ Dt(?- j2)2  
J -x 

where 7 is given by (24) and 

(45) 
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where 

X2+(qox-iX)* 

2qo 
w(X, x) = 

and = A  +dqt. 
For the biased case, a2G2 remains unchanged, while d2GI involves the additional 

order parameter M”. Using the same techniques as in de Almeida and Thouless (1978) 
and then proceeding as above (Gardner 1988, Gardner and Derrida 1988) we find that 
the stability criterion has the same form as (44), but now y 1  is given by 

- 
where x k  has the same form as (46), except that 

( I  - m2)’”X2+(&x -iX)2 
2 4 0  

w(X, x)  = 

with X = A - mu[ + [ q( 1 - m2)]”’ t  and io = qo( 1 - m2) .  

discussed in this paper a A T ( ~ ,  m )  < a G D ( ~ ,  m ) .  
The CY at which (44) breaks down defines C Y * ~ ( K ,  m) .  For all the discrete cases 

3.3. The Z E  line 

In the previous subsection we presented an argument for accepting the AT line as an 
estimate of the actual capacity. However, for the cases studied here the entropy is 
negative on the AT line. From the very definition of G = In a, positive entropy indicates 
that the number of Jli that obey the constraints is exponential in N,  while negative 
entropy implies that there will be no valid solutions in the thermodynamic limit. Thus 
we expect the value of CY for which the entropy becomes zero to determine the storage 
capacity. This criterion defines the ZE line C Y ‘ ~ ( K ) .  We find that for all the discrete 
constraints studied here 

C Y Z E ( K )  < CYAT(K)< CYGD(K) (48) 

which, in particular, means that the solutions on the ZE line are stable with respect to 
RSB. Thus, a Z E (  K )  is a consistent estimate of the storage capacity; one should, however, 
keep in mind that due to a possible first-order transition, the true solution may actually 
be somewhere else in replica space (Krauth and MCzard 1989). 

4. Specific unbiased cases 

4.1. The Jv*l case 

This case, frequently referred to as the ‘Ising’ interaction, was considered by Gardner 
and Derrida (1988). The saddle-point equations simplify considerably in this case, 
since J 2  and Q are replaced by unity. In particular the G D  line can be found analytically, 
since from (36) and (23) one obtains 

1 / 2  x 

( C Y  Dt(  t + K ) ~ )  = Du u tanh( u J F , ) .  
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In the small qo limit the tanh becomes the sign function and the right-hand side integral 
gives (2/7r)’”. After slight reshuffling we find 

2 
a G D ( K )  =- d ( K )  (49) 

IT 

(where a S ( ~ )  is the optimal storage capacity obtained by Gardner for the spherical 
normalisation case) which is a result of Gardner and Derrida (1988). 

To check the stability of the GD line with respect to RSB, we note that, as qo+O,  
y1 simplifies to 

Y1 =i lx Dt. (50) 
40 - K / Y Q  

This is true in general, while for the Ising case y2 simplifies as well, one finds 
X 

y 2  = Dt[l  - tanh2(JFl  t ) I 2 .  
--a^ 

Since y1 is proportional to q02 while y2 behaves as qo, the left-hand side of (44) 
diverges on the GD line. Hence, the AT line must lie below the GD line. Gardner and 
Derrida noted that the entropy on the Ising GD line is negatively infinite-implying 
that at this storage level, there are no solutions at all rather than a unique solution. 

We present the three lines of interest for the Ising case as compared with Gardner’s 
spherical constraint line in figure 1. We note that the GD line is indeed proportional 
to Gardner’s line as implied by (49). This turns out to be the case due to the fact that 
the spherical constraint ( 3 )  is trivially obeyed for the Ising case-although it is not 
for any other discrete case. In addition we see, as indicated above, that the GD line 
is unstable with respect to RSB while the ZE line, lying beneath the AT line, is stable. 
In fact, we will show that relations (48) and (49) turn out to be correct for memories 
with bias m as well. 

K 

0.5 1 1.5 2 
a 

Figure 1. Phase diagram for the Ising case. The continuous curves, from top to bottom, 
are the GD, AT and ZE curves, respectively. T h e  broken curve gives, for comparison, the 
storage capacity for the spherical constraint. 
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The AT line touches the axis at approximately a = 1.01 while the ZE line gives 
a‘“( K = 0) = 0.832. Krauth and MCzard (1989) find that, with one-step replica sym- 
metry breaking, a ,  is determined precisely by the vanishing of the replica symmetric 
entropy. In addition, they point out that if one terminates the aforementioned shrinking 
process for the spherical constraint in such a fashion that one corner of the hypercube 
must still be included, then ac( K = 0) = 0.85, which is just slightly higher than the value 
Of a Z E ( K = O ) .  

4.2. The Jv = 0, 1 case 

One can similarly handle the binary-valued case J, = 0,1,  breaking the positive-negative 
symmetry of allowed couplings. This seems to be the simplest case for hardware 
implementation and it characterises the ‘Willshaw’ model (Willshaw et a1 1969, Golomb 
et a1 1990) wherein, given the p memories VY ( VY = 0, l ) ,  a specific form of the synaptic 
couplings 

is assumed. Simply stated, if neurons i and j are active in at least one stored pattern, 
then the Willshaw model takes Ji, = 1. These couplings are appropriate for the sparse 
coding problem, when the fraction of active neurons is of the order In( N ) /  N. When 
the activity is extensive the coupling matrix is saturated after storing a finite number 
of memories. 

In the Willshaw model, however, the neural activity is taken to be V, = 0, 1 as well. 
This (0, 1 )  representation of neural activity is well known to be equivalent to our 
( - 1 ,  f l )  representation, to within a local threshold. It is indeed possible to modify 
our basic inequalities (2) to get 

(2VY- l ) ( z  Ji,V;-OJN 
I 

and one sees that allowing thresholds, the results for capacity are completely indepen- 
dent of which representation is used. 

We find that it is possible to store an extensive number of memories with extensive 
activity in a network with binary couplings J, =0,1. The saddle-point equations in 
the qo + 0 limit reduce to 

2 

Du =? (Iw Du U)*. 
a va/80 

(53) 

From this one may deduce that Q+ when a + 0 and that the GD prediction is 
a G D ( ~  = 0) = 0.81 and Q = 0.27. The zero-entropy calculation gives in this case a 
storage capacity a Z E ( ~  = 0) = 0.59 and self-overlap (which for Ju = 0, 1 bonds means 
the fraction of bonds present) Q = 0.32. Due to the separability of the post-synaptic 
neurons (as mentioned after equation ( 5 )  above), all our results are equally valid for 
a single layer perceptron with one binary *l  output unit. Thus we deduce that one 
can implement an association of p = 0.59N randomly chosen patterns (where N is the 
number of input units) with a single binary *l output by connecting only 32% of the 
input units to the output unit. This implies that about one third of the elementary 
units serve to classify a set of patterns stored in such a perceptron. 
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We have verified this result by simulations on small systems (up to N = 14) by 
performing exhaustive search. We start with a randomly chosen initial pattern and 
find all possible vectors 4 which satisfy the required inequalities. We then chose a 
second pattern at random (only requiring that it be different from the first), and 
determine which of the 4 vectors found in the previous step stabilise this new pattern 
as well. We thus continue adding new patterns until no J, vectors remain, at which 
point we have found the number of random patterns that can be stored. We then 
update the statistics of the number of non-zero bonds in the vectors remaining in the 
final step, in order to calculate the typical Q. This process is repeated for many sets 
of randomly chosen patterns and for various sizes of N (we found 20000 different 
pattern sets for N = 4,6,8 and 10 000 for N = 10, 14 to give sufficiently accurate 
statistics). Our results are presented in figure 2 where average a, and typical Q are 
plotted against 1/N. The broken curve is the best quadratic fit to the experimental 
points. We find that extrapolation to N + a3 gives a, = 0.55 * 0.04 and Q = 0.32 f 0.03. 

0.8 

0.2 + 
+ 

L I I I 

0. I 0.2 0.3 
1 / N  

Figure 2. Simulation results for the J,, = 0, 1 case. The upper points are the empirical CI 

values, while the lower points represent Q values. The broken curves are best quadratic fits. 

4.3. The digital case 

We now treat several discrete levels of synaptic strengths (the synaptic depth will be 
denoted by L in the following), which, in order to facilitate comparison, will be taken 
as follows: 

For all finite L, the G D  line lies above the AT line (and is thus unstable and does 
not provide a good estimate for the capacity) which in turn lies above the ZE line 
(which is thus stable and should provide a good estimate). We plot the ZE lines for 
various depths in figure 3. 

One can estimate the K = 0 storage capacity by the following approximate argument. 
Assume that, for given a, Jij is a solution obeying the spherical constraint corresponding 
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0 .5  1 15 2 
a 

Figure 3. Z E  lines for the digital case. The curves from bottom to top are for L = 1,2 ,3 ,4 ,  CO. 

to the maximal K for this a. Then 

where the function K : (  a )  is the inverse function of a f ( ~ ) .  We can rescale this inequality 
by L after which most of the rescaled Jh values will be in the interval [ - L ,  . . . , L ]  and 
thus can be represented by 

LJ,, =T+A,, (56) 
where q are integers and IAol s 4. The inequalities (55) become 

Estimating the second term on the right-hand side by + J N  one finds that the critical 
a for which the left-hand side is positive is determined by 

The a thus determined is an estimate for the K = O  storage capacity of the discrete 
model with synaptic depth L. In figure 4 we plot for L = 1, . . . , 10 this estimate along 
with the results of the GD (triangles) and ZE (squares) calculations described above. 
We see that the estimate is very close to the ZE result, at least for L 5 3 and that for 
large L one approaches the limit a =2 .  

Another interesting variation on the discrete synapse theme is to allow for absent 
bonds as well, i.e. to permit the value Jij = 0. One can repeat the calculations with 
equal facility for this case and the effects prove not to be drastic. In all cases the 
capacity as determined by the Z E  line for Ju = 0, *l/  L, . . . , *1 is between the depth 
L and depth L +  1 capacities. For example, with all bonds present, we obtain a Z E ( ~  = 
0) = 0.832, 1.331, 1.529 for L = 1 ,2 ,3  respectively, while allowing for absent bonds we 
find storage capacities a Z E ( ~  = 0) = 1.174 and 1.477 for L = 1,2.  

Finally, one can extend the Jii = 0, 1 binary case to Jv = 0, 1/ L, . . . , 1; for example, 
when Jij = 0, 5,l  one finds a'"( K = 0 )  = 0.74. As L increases in this model, a approaches 
unity as expected for networks with continuous Ji/ restricted to positive values (Amit 
et a1 1989). 

K S ( ( I ) =  1/2L. (58) 
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3 

+ 
I 

5 10 

L 

Figure 4. Storage capacity for the digital case as a function of synaptic depth. The full 
curve represents the estimate (see text), while the squares and triangles represent the ZE 
and G D  results, respectively. 

5. The box confinement constraint 

If we allow the synaptic depth to grow indefinitely, we obtain the continuous ‘box 
confinement’ constraint 

As L+ CO the three lines of interest approach one another, and for the truly continuous 
case one can show, by substituting (42) into (24) for (59) and explicitly performing 
the integrations in (18), (22) and (23), that the entropy is zero on the GD line. One 
finds that this line lies well below the capacity for the spherical constraint L Y ’ ( K ) ,  
except at K =0,  when both give a =2. To compare the two cases, let us, for a given 
a and K ,  scale the couplings which satisfy (2) (with O i  = 0) and ( 5 9 ) ,  by the correspond- 
ing l /JQ. The matrix J $  thus obtained is normalised as in (3) and satisfies the 
inequalities (2) with K ’ =  K/JQ. Nevertheless, the curve a Z E ( ~ ’ )  is still below ( Y ’ ( K ) ,  
due to the further restriction on the individual matrix elements Jijd 1/40. This 
indicates that the optimal solutions obtained with the spherical constraint, for K > 0, 
have large dynamic range, i.e. some matrix elements are very large while the majority 
remain small. 

One of the advantages of the box confinement constraint ( 5 9 )  is that, in this case, 
we can cast the calculation of 4, satisfying (2), with the largest possible K ,  for a given 
set of memories, into a ‘linear programming’ ( LP) problem, for which efficient methods 
of solution are known (e.g. the simplex method (Krauth and Mtzard 1 9 8 7 ) ) .  

We have performed simulations using the simplex method for N = 100. Given 
many realisations of p = aN patterns we found in each case the optimal ~ ( a )  and 
then averaged over the values of K thus obtained. This procedure is repeated for 
various values of a and the average K (a )  is presented in figure 5 superposed on the 
box constraint ZE line. The agreement is seen to be quite good. What has been achieved 
here is just what was done by Krauth and Mezard ( 1 9 8 7 )  using the ‘minover’ algorithm, 
who showed that a ’ ( ~ )  is indeed the optimal storage capacity for the spherical 
constraint. 

lJijl d 1. ( 5 9 )  
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Figure 5. Phase diagram for the box confinement case. The full curve is the theoretical 
capacity and the results from simplex simulations are the overlaid points. The broken 
curve is the storage capacity for the spherical constraint, while the dotted curve is the box 
confinement capacity modified so as to obey the spherical constraint (see text). 

6. Biased memories and the limit m + 1 

We have shown in section 2.2 that the entire program outlined in the present paper 
can be extended to the treatment of biased memories. In particular, we have investigated 
the two binary cases of sections 4.1 and 4.2 and verified that for all m the inequalities 
(48) hold. We present in figure 6 the three lines of interest for the king interaction, 
taking K = 0 and plotting the critical capacity as a function of the bias. For comparison 
we present the spherical constraint line as well. 
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U 

0.5 
m 

Figure 6. The a - m  plane of the phase diagram for the biased Ising case. The full curves, 
from top to bottom, are the OD, AT and ZE curves, respectively. The dotted curve gives, 
for comparison, the storage capacity for the spherical constraint. 
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We now wish to discuss the limit m + 1, which is of interest due to its relation with 
sparse coding networks, wherein only a small fraction of the neurons are active. The 
connection can be made since, in view of the (+ 1, - 1) symmetry our neurons, the limit 
m + 1 is equivalent to the m + -1 limit, for which indeed only a very small fraction 
of the neurons is active. For the (0 , l )  representation, mentioned before in connection 
with the Willshaw model and which is equivalent to our (-1, +1) to within a local 
threshold, this is the limit of sparse coding a + 0 (a being the fraction of active neurons). 

The m + 1 limit was discussed by Gardner (1988) who compared the information 
capacity per bond for optimal storage spherical normalisation networks to that achieved 
by the Willshaw model. The information capacity is the total number of bits stored 
in the memories divided by the number of bonds, and is thus given by 

For the spherical constraint, in the limit m + 1: 

a ,S(m)+-[ ( l -m)  In( l -m)] - '  (61) 

one obtains an optimal information capacity of I (  m + 1) = 0.72. The Willshaw model, 
with its specific couplings, gives the surprisingly good I (  m + 1) = 0.69. The information 
capacity of networks with sparsely coded memories has been recently discussed (Nadal 
1989a, b, Nadal and Toulouse 1990, Perez Vicente 1989). 

From equations (60) and (61) we find that I ( m ) ,  when m+l ,  has the form 

a2 
In( 1 - m )  

I (  m )  = a, - 

where a, and a, are constants. Assuming this form to be more general, we have plotted 
in figure 7 the information capacity for the two binary cases as a function of w =  
l / ln(  1 - m), for values of m approaching unity. The uppermost curve in the figure 
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Figure 7. Information capacity for spherical and binary cases, in the limit m -B 1.  The 
different curves are explained in the text. 
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represents the information capacity of the spherical model with the limiting value (at 
m + 1 which corresponds to p + 0) of 0.72. It is noteworthy to point out that, even at 
p = -0.1 (or m = 0.9999), this curve is still not a straight line, which indicates that the 
limiting form (61) is approached very slowly. The broken curves represent results 
based on GD line calculations, for the Ising interaction (upper) and the J, = 0, 1 case 
(lower). The remaining full curves are the ZE results for these two cases (in the same 
order). The numerical accuracy of our ZE calculation breaks down beyond p = -0.1; 
even so we observe that the m + 1 information content of the Jij = 0, 1 case is certainly 
less than 0.29 (the limiting value of the GD result) which is much lower than the value 
obtained in the Willshaw model. One would expect that the information content of 
the optimal storage capacity connectivity matrix would surpass that of the Willshaw 
model which imposes a specific form of Jij .  We believe that the resolution of this 
apparent paradox lies in one or both of the following points: ( a )  the Willshaw model 
corresponds to a = c In N /  N with N + 00 while the a + 0 limit explored in the present 
calculation is a = c N with c + 0 and thus the result of the former is not necessarily 
obtained as the limit of the latter; ( b )  the results we obtain are based on the condition 
that the stored memories are exact fixed points, while the Willshaw result follows from 
the requirement of zero noise-to-signal ratio. If one requires strictly zero retrieval error 
instead, one gets a lower information capactity (Nadal 1989a). 

7. Concluding remarks 

We have extended Gardner’s work to a new class of constraints on the coupling matrix. 
In the process we have established that the best and most consistent estimate of storage 
capacity in networks with discrete couplings is given by the criterion of zero entropy. 
This criterion can be applied in all these cases where the entropy can be unambiguously 
defined as the logarithm of the number of available configurations. This conclusion 
is supported by simultations for the binary and box confinement cases. Moreover, an 
approximate estimate of the critical storage capacity for finite L, which is expected to 
improve as L increases, gives very good agreement with the ZE result. 

The basic problem impeding implementation of models with discrete constraints 
is that we do not have general algorithms for finding optimal matrices for most cases. 
In fact, we do not even know whether efficient algorithms exist. One possible approach 
is to find a continuous valued solution using, for example, the perceptron algorithm, 
and then to discretise the couplings as in section 4.3. In general, the resulting Aj will 
not satisfy (2). However, they may furnish starting points for further learning sessions. 
This procedure may be repeated until the discretised matrix becomes a solution. 
Although there is no guarantee that this process converges to a solution, preliminary 
results indicate that, sufficiently far from saturation, it does. This method deserves 
more systematic study. 
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